Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Adv Healthc Mater ; 13(3): e2302128, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37922434

RESUMO

Peripheral nerve injuries (PNI) can lead to mitochondrial dysfunction and energy depletion within the affected microenvironment. The objective is to investigate the potential of transplanting mitochondria to reshape the neural regeneration microenvironment. High-purity functional mitochondria with an intact structure are extracted from human umbilical cord-derived mesenchymal stem cells (hUCMSCs) using the Dounce homogenization combined with ultracentrifugation. Results show that when hUCMSC-derived mitochondria (hUCMSC-Mitos) are cocultured with Schwann cells (SCs), they promote the proliferation, migration, and respiratory capacity of SCs. Acellular nerve allografts (ANAs) have shown promise in nerve regeneration, however, their therapeutic effect is not satisfactory enough. The incorporation of hUCMSC-Mitos within ANAs has the potential to remodel the regenerative microenvironment. This approach demonstrates satisfactory outcomes in terms of tissue regeneration and functional recovery. Particularly, the use of metabolomics and bioenergetic profiling is used for the first time to analyze the energy metabolism microenvironment after PNI. This remodeling occurs through the enhancement of the tricarboxylic acid cycle and the regulation of associated metabolites, resulting in increased energy synthesis. Overall, the hUCMSC-Mito-loaded ANAs exhibit high functionality to promote nerve regeneration, providing a novel regenerative strategy based on improving energy metabolism for neural repair.


Assuntos
Células-Tronco Mesenquimais , Tecido Nervoso , Traumatismos dos Nervos Periféricos , Humanos , Nervo Isquiático , Células de Schwann , Traumatismos dos Nervos Periféricos/terapia , Matriz Extracelular , Regeneração Nervosa/fisiologia
2.
EBioMedicine ; 95: 104749, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37549631

RESUMO

BACKGROUND: There are sex-specific differences in the prevalence, symptomology and course of psychiatric disorders. However, preclinical models have primarily used males, such that the molecular mechanisms underlying sex-specific differences in psychiatric disorders are not well established. METHODS: In this study, we compared transcriptome-wide gene expression profiles in male and female rats within the corticolimbic system, including the cingulate cortex, nucleus accumbens medial shell (NAcS), ventral dentate gyrus and the basolateral amygdala (n = 22-24 per group/region). FINDINGS: We found over 3000 differentially expressed genes (DEGs) in the NAcS between males and females. Of these DEGs in the NAcS, 303 showed sex-dependent conservation DEGs in humans and were significantly enriched for gene ontology terms related to blood vessel morphogenesis and regulation of cell migration. Single nuclei RNA sequencing in the NAcS of male and female rats identified widespread sex-dependent expression, with genes upregulated in females showing a notable enrichment for synaptic function. Female upregulated genes in astrocytes, Drd3+MSNs and oligodendrocyte were also enriched in several psychiatric genome-wide association studies (GWAS). INTERPRETATION: Our data provide comprehensive evidence of sex- and cell-specific molecular profiles in the NAcS. Importantly these differences associate with anxiety, bipolar disorder, schizophrenia, and cross-disorder, suggesting an intrinsic molecular basis for sex-based differences in psychiatric disorders that strongly implicates the NAcS. FUNDING: This work was supported by funding from the Hope for Depression Research Foundation (MJM).


Assuntos
Estudo de Associação Genômica Ampla , Transtornos Mentais , Humanos , Masculino , Feminino , Ratos , Animais , Encéfalo/metabolismo , Transtornos Mentais/genética , Transtornos Mentais/metabolismo , Transcriptoma , Análise de Sequência de RNA
3.
Neuroscience ; 524: 149-157, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37286159

RESUMO

Deferoxamine (DFO) is a potent iron chelator for clinical treatment of various diseases. Recent studies have also shown its potential to promote vascular regeneration during peripheral nerve regeneration. However, the effect of DFO on the Schwann cell function and axon regeneration remains unclear. In this study, we investigated the effects of different concentrations of DFO on Schwann cell viability, proliferation, migration, expression of key functional genes, and axon regeneration of dorsal root ganglia (DRG) through a series of in vitro experiments. We found that DFO improves Schwann cell viability, proliferation, and migration in the early stages, with an optimal concentration of 25 µM. DFO also upregulates the expression of myelin-related genes and nerve growth-promoting factors in Schwann cells, while inhibiting the expression of Schwann cell dedifferentiation genes. Moreover, the appropriate concentration of DFO promotes axon regeneration in DRG. Our findings demonstrate that DFO, with suitable concentration and duration of action, can positively affect multiple stages of peripheral nerve regeneration, thereby improving the effectiveness of nerve injury repair. This study also enriches the theory of DFO promoting peripheral nerve regeneration and provides a basis for the design of sustained-release DFO nerve grafts.


Assuntos
Regeneração Nervosa , Traumatismos dos Nervos Periféricos , Humanos , Regeneração Nervosa/fisiologia , Gânglios Espinais , Axônios , Desferroxamina/metabolismo , Desferroxamina/farmacologia , Células Cultivadas , Células de Schwann/metabolismo , Fatores de Crescimento Neural/metabolismo , Traumatismos dos Nervos Periféricos/metabolismo
4.
Chin J Traumatol ; 2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37311687

RESUMO

PURPOSE: Ischemia and hypoxia are the main factors limiting limb replantation and transplantation. Static cold storage (SCS), a common preservation method for tissues and organs, can only prolong limb ischemia time to 4-6 h. The normothermic machine perfusion (NMP) is a promising method for the preservation of tissues and organs, which can extend the preservation time in vitro by providing continuous oxygen and nutrients. This study aimed to evaluate the difference in the efficacy of the 2 limb preservation methods. METHODS: The 6 forelimbs from beagle dogs were divided into 2 groups. In the SCS group (n = 3), the limbs were preserved in a sterile refrigerator at 4 °C for 24 h, and in the NMP group (n = 3), the perfusate prepared with autologous blood was used for the oxygenated machine perfusion at physiological temperature for 24 h, and the solution was changed every 6 h. The effects of limb storage were evaluated by weight gain, perfusate biochemical analysis, enzyme-linked immunosorbent assay (ELISA), and histological analysis. All statistical analyses and graphs were performed using GraphPad Prism 9.0 one-way or two-way analysis of variance (ANOVA). The p value of less than 0.05 was considered to indicate statistical significance. RESULTS: In the NMP group, the weight gained percentage was 11.72% ± 4.06%; the hypoxia-inducible factor-1α (HIF-1α) contents showed no significant changes; the shape of muscle fibers was normal; the gap between muscle fibers slightly increased, showing the intercellular distance of (30.19 ± 2.83) µm; and the vascular α-smooth muscle actin (α-SMA) contents were lower than those in the normal blood vessels. The creatine kinase level in the perfusate of the NMP group increased from the beginning of perfusion, decreased after each perfusate change, and remained stable at the end of perfusion showing a peak level of 4097.6 U/L. The lactate dehydrogenase level of the NMP group increased near the end of perfusion and reached the peak level of 374.4 U/L. In the SCS group, the percentage of weight gain was 0.18% ± 0.10%, and the contents of hypoxia-inducible factor-1α increased gradually and reached the maximum level of (164.85 ± 20.75) pg/mL at the end of the experiment. The muscle fibers lost their normal shape, and the gap between muscle fibers increased showing an intercellular distance of (41.66 ± 5.38) µm. The contents of vascular α-SMA were much lower in the SCS group as compared to normal blood vessels. CONCLUSIONS: NMP caused lesser muscle damage and contained more vascular α-SMA as compared to SCS. This study demonstrated that NMP of the amputated limb with perfusate solution based on autologous blood could maintain the physiological activities of the limb for at least 24 h.

5.
Bioact Mater ; 26: 370-386, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36942011

RESUMO

Autologous nerve grafting serves is considered the gold standard treatment for peripheral nerve defects; however, limited availability and donor area destruction restrict its widespread clinical application. Although the performance of allogeneic decellularized nerve implants has been explored, challenges such as insufficient human donors have been a major drawback to its clinical use. Tissue-engineered neural regeneration materials have been developed over the years, and researchers have explored strategies to mimic the peripheral neural microenvironment during the design of nerve catheter grafts, namely the extracellular matrix (ECM), which includes mechanical, physical, and biochemical signals that support nerve regeneration. In this study, polycaprolactone/silk fibroin (PCL/SF)-aligned electrospun material was modified with ECM derived from human umbilical cord mesenchymal stem cells (hUMSCs), and a dual-bionic nerve regeneration material was successfully fabricated. The results indicated that the developed biomimetic material had excellent biological properties, providing sufficient anchorage for Schwann cells and subsequent axon regeneration and angiogenesis processes. Moreover, the dual-bionic material exerted a similar effect to that of autologous nerve transplantation in bridging peripheral nerve defects in rats. In conclusion, this study provides a new concept for designing neural regeneration materials, and the prepared dual-bionic repair materials have excellent auxiliary regenerative ability and further preclinical testing is warranted to evaluate its clinical application potential.

6.
Glia ; 71(3): 758-774, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36484493

RESUMO

Following peripheral nerve injury (PNI), Wallerian degeneration (WD) in the distal stump can generate a microenvironment favorable for nerve regeneration. Brief low-frequency electrical stimulation (ES) is an effective treatment for PNI, but the mechanism underlying its effect on WD remains unclear. Therefore, we hypothesized that ES could enhance nerve regeneration by accelerating WD. To verify this hypothesis, we used a rat model of sciatic nerve transection and provided ES at the distal stump of the injured nerve. The injured nerve was then evaluated after 1, 4, 7, 14 and 21 days post injury (dpi). The results showed that ES significantly promoted the degeneration and clearance of axons and myelin, and the dedifferentiation of Schwann cells. It upregulated the expression of BDNF and NGF and increased the number of monocytes and macrophages. Through transcriptome sequencing, we systematically investigated the effect of ES on the molecular processes involved in WD at 4 dpi. Evaluation of nerves bridged using silicone tubing after transection showed that ES accelerated early axonal and vascular regeneration while delaying gastrocnemius atrophy. These results demonstrate that ES promotes nerve regeneration by accelerating WD and upregulating the expression of neurotrophic factors.


Assuntos
Traumatismos dos Nervos Periféricos , Neuropatia Ciática , Ratos , Animais , Traumatismos dos Nervos Periféricos/metabolismo , Degeneração Walleriana/terapia , Degeneração Walleriana/patologia , Neuropatia Ciática/patologia , Nervo Isquiático/metabolismo , Células de Schwann/metabolismo , Axônios/metabolismo , Regeneração Nervosa/fisiologia , Estimulação Elétrica
7.
Mol Psychiatry ; 27(11): 4510-4525, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36056172

RESUMO

Depression and anxiety are major global health burdens. Although SSRIs targeting the serotonergic system are prescribed over 200 million times annually, they have variable therapeutic efficacy and side effects, and mechanisms of action remain incompletely understood. Here, we comprehensively characterise the molecular landscape of gene regulatory changes associated with fluoxetine, a widely-used SSRI. We performed multimodal analysis of SSRI response in 27 mammalian brain regions using 310 bulk RNA-seq and H3K27ac ChIP-seq datasets, followed by in-depth characterisation of two hippocampal regions using single-cell RNA-seq (20 datasets). Remarkably, fluoxetine induced profound region-specific shifts in gene expression and chromatin state, including in the nucleus accumbens shell, locus coeruleus and septal areas, as well as in more well-studied regions such as the raphe and hippocampal dentate gyrus. Expression changes were strongly enriched at GWAS loci for depression and antidepressant drug response, stressing the relevance to human phenotypes. We observed differential expression at dozens of signalling receptors and pathways, many of which are previously unknown. Single-cell analysis revealed stark differences in fluoxetine response between the dorsal and ventral hippocampal dentate gyri, particularly in oligodendrocytes, mossy cells and inhibitory neurons. Across diverse brain regions, integrative omics analysis consistently suggested increased energy metabolism via oxidative phosphorylation and mitochondrial changes, which we corroborated in vitro; this may thus constitute a shared mechanism of action of fluoxetine. Similarly, we observed pervasive chromatin remodelling signatures across the brain. Our study reveals unexpected regional and cell type-specific heterogeneity in SSRI action, highlights under-studied brain regions that may play a major role in antidepressant response, and provides a rich resource of candidate cell types, genes, gene regulatory elements and pathways for mechanistic analysis and identifying new therapeutic targets for depression and anxiety.


Assuntos
Montagem e Desmontagem da Cromatina , Fluoxetina , Humanos , Antidepressivos/farmacologia , Encéfalo/metabolismo , Metabolismo Energético/genética , Fluoxetina/farmacologia , Fluoxetina/metabolismo , Mamíferos , Multiômica , Animais
8.
Biomater Res ; 26(1): 24, 2022 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-35690849

RESUMO

BACKGROUND: Developing biocompatible nerve conduits that accelerate peripheral nerve regeneration, lengthening and functional recovery remains a challenge. The combined application of nerve microtissues and platelet-rich plasma (PRP) provides abundant Schwann cells (SCs) and various natural growth factors and can compensate for the deficiency of SCs in the nerve bridge, as well as the limitations of applying a single type of growth factor. Multimodal ultrasound evaluation can provide additional information on the stiffness and microvascular flow perfusion of the tissue. This study was designed to investigate the effectiveness of a novel tissue-engineered nerve graft composed of an autogenous vein, nerve microtissues and PRP in reconstructing a 12-mm tibial nerve defect and to explore the value of multimodal ultrasound techniques in evaluating the prognosis of nerve repair. METHODS: In vitro, nerve microtissue activity was first investigated, and the effects on SC proliferation, migration, factor secretion, and axonal regeneration of dorsal root ganglia (DRG) were evaluated by coculture with nerve microtissues and PRP. In vivo, seventy-five rabbits were equally and randomly divided into Hollow, PRP, Micro-T (Microtissues), Micro-T + PRP and Autograft groups. By analysing the neurological function, electrophysiological recovery, and the comparative results of multimodal ultrasound and histological evaluation, we investigated the effect of these new nerve grafts in repairing tibial nerve defects. RESULTS: Our results showed that the combined application of nerve microtissues and PRP could significantly promote the proliferation, secretion and migration of SCs and the regeneration of axons in the early stage. The Micro-T + PRP group and Autograft groups exhibited the best nerve repair 12 weeks postoperatively. In addition, the changes in target tissue stiffness and microvascular perfusion on multimodal ultrasound (shear wave elastography; contrast-enhanced ultrasonography; Angio PlaneWave UltrasenSitive, AngioPLUS) were significantly correlated with the histological results, such as collagen area percentage and VEGF expression, respectively. CONCLUSION: Our novel tissue-engineered nerve graft shows excellent efficacy in repairing 12-mm defects of the tibial nerve in rabbits. Moreover, multimodal ultrasound may provide a clinical reference for prognosis by quantitatively evaluating the stiffness and microvescular flow of nerve grafts and targeted muscles.

9.
Stem Cell Res Ther ; 13(1): 3, 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-35012663

RESUMO

BACKGROUND: Peripheral nerve injury (PNI) is one of the essential causes of physical disability with a high incidence rate. The traditional tissue engineering strategy, Top-Down strategy, has some limitations. A new tissue-engineered strategy, Bottom-Up strategy (tissue-engineered microtissue strategy), has emerged and made significant research progress in recent years. However, to the best of our knowledge, microtissues are rarely used in neural tissue engineering; thus, we intended to use microtissues to repair PNI. METHODS: We used a low-adhesion cell culture plate to construct adipose-derived mesenchymal stem cells (ASCs) into microtissues in vitro, explored the physicochemical properties and microtissues components, compared the expression of cytokines related to nerve regeneration between microtissues and the same amount of two-dimension (2D)-cultured cells, co-cultured directly microtissues with dorsal root ganglion (DRG) or Schwann cells (SCs) to observe the interaction between them using immunocytochemistry, quantitative reverse transcription polymerase chain reaction (qRT-PCR), enzyme-linked immunosorbent assay (ELISA). We used grafts constructed by microtissues and polycaprolactone (PCL) nerve conduit to repair sciatic nerve defects in rats. RESULTS: The present study results indicated that compared with the same number of 2D-cultured cells, microtissue could secrete more nerve regeneration related cytokines to promote SCs proliferation and axons growth. Moreover, in the direct co-culture system of microtissue and DRG or SCs, axons of DRG grown in the direction of microtissue, and there seems to be a cytoplasmic exchange between SCs and ASCs around microtissue. Furthermore, microtissues could repair sciatic nerve defects in rat models more effectively than traditional 2D-cultured ASCs. CONCLUSION: Tissue-engineered microtissue is an effective strategy for stem cell culture and therapy in nerve tissue engineering.


Assuntos
Regeneração Nervosa , Engenharia Tecidual , Animais , Células Cultivadas , Regeneração Nervosa/fisiologia , Ratos , Células de Schwann , Nervo Isquiático , Células-Tronco , Engenharia Tecidual/métodos
10.
Stem Cell Res Ther ; 13(1): 18, 2022 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-35033187

RESUMO

Various immune cells and cytokines are present in the aftermath of peripheral nerve injuries (PNI), and coordination of the local inflammatory response is of great significance for the recovery of PNI. Mesenchymal stem cells (MSCs) exhibit immunosuppressive and anti-inflammatory abilities which can accelerate tissue regeneration and attenuate inflammation, but the role of MSCs in the regulation of the local inflammatory microenvironment after PNI has not been widely studied. Here, we summarize the known interactions between MSCs, immune cells, and inflammatory cytokines following PNI with a focus on the immunosuppressive role of MSCs. We also discuss the immunomodulatory potential of MSC-derived extracellular vesicles as a new cell-free treatment for PNI.


Assuntos
Vesículas Extracelulares , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Traumatismos dos Nervos Periféricos , Citocinas , Humanos , Imunomodulação , Traumatismos dos Nervos Periféricos/terapia
11.
Tissue Eng Part B Rev ; 28(5): 1007-1021, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-34641714

RESUMO

The involvement of cell-derived extracellular matrix (CDM) in assembling tissue engineering scaffolds has yielded significant results. CDM possesses excellent characteristics, such as ideal cellular microenvironment mimicry and good biocompatibility, which make it a popular research direction in the field of bionanomaterials. CDM has significant advantages as an expansion culture substrate for stem cells, including stabilization of phenotype, reversal of senescence, and guidance of specific differentiation. In addition, the applications of CDM-assembled tissue engineering scaffolds for disease simulation and tissue organ repair are comprehensively summarized; the focus is mainly on bone and cartilage repair, skin defect or wound healing, engineered blood vessels, peripheral nerves, and periodontal tissue repair. We consider CDM as a highly promising bionic biomaterial for tissue engineering applications and propose a vision for its comprehensive development. Impact statement Cell-derived extracellular matrix (CDM) has received continued attention on the field of tissue engineering because of its promising biological characteristics. CDM deposited in vitro is rich in protein fractions and contains a wealth of biological information that provides a suitable niche for the survival and activity of isolated cells. More importantly, the free-assembling feature of CDM allows it to participate in the assembly of tissue-engineered scaffolds, imparting bionic properties to regenerative scaffolds, and thus CDM-modified scaffolds are widely used in the reconstruction of bone and cartilage tissue, peripheral nerves, skin, and blood vessels. This article is dedicated to summarizing the important results achieved by CDM-modified tissue engineering scaffolds in tissue organ reconstruction, helping readers to understand the developments in this field in recent years.


Assuntos
Matriz Extracelular , Engenharia Tecidual , Engenharia Tecidual/métodos , Matriz Extracelular/metabolismo , Tecidos Suporte/química , Cartilagem , Materiais Biocompatíveis
12.
Psychoneuroendocrinology ; 136: 105600, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34839083

RESUMO

Childhood abuse significantly increases the lifetime risk of negative mental health outcomes. The oxytocinergic system, which plays a role in complex social and emotional behaviors, has been shown to be sensitive to early-life experiences. While previous studies have investigated the relationship between early-life adversity and oxytocin, they did so with peripheral samples. We, therefore, aimed to characterize the relationship between early-life adversity and oxytocin receptor (OXTR) expression in the brain, using post-mortem human samples, as well as a rodent model of naturally occurring variation in early-life environment. Focusing on the dorsal anterior cingulate cortex, we compared OXTR expression and epigenetic regulation between MDD suicides with (N = 26) and without history of childhood abuse (N = 24), as well as psychiatrically healthy controls (N = 23). We also compared Oxtr expression in the cingulate cortex of adult rats raised by dams displaying high (N = 13) and low levels (N = 12) of licking and grooming (LG) behavior. Overall, our results indicate that childhood abuse associates with an upregulation of OXTR expression, and that similarly, this relationship is also observed in the cingulate cortex of adult rats raised by low-LG dams. Additionally, we found an effect of rs53576 genotype on expression, showing that carriers of the A variant also show upregulated OXTR expression. The effects of early-life adversity and rs53576 genotype on OXTR expression are, however, not explained by differences in DNA methylation within and around the MT region of the OXTR gene.


Assuntos
Receptores de Ocitocina , Suicídio , Animais , Criança , Epigênese Genética/genética , Giro do Cíngulo/metabolismo , Humanos , Ocitocina/metabolismo , Polimorfismo de Nucleotídeo Único , Ratos , Receptores de Ocitocina/genética , Receptores de Ocitocina/metabolismo
13.
Neuropsychopharmacology ; 47(5): 987-999, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34848858

RESUMO

The multifactorial etiology of stress-related disorders necessitates a constant interrogation of the molecular convergences in preclinical models of stress that use disparate paradigms as stressors spanning from environmental challenges to genetic predisposition to hormonal signaling. Using RNA-sequencing, we investigated the genomic signatures in the ventral hippocampus common to mouse models of stress. Chronic oral corticosterone (CORT) induced increased anxiety- and depression-like behavior in wild-type male mice and male mice heterozygous for the gene coding for brain-derived neurotrophic factor Val66Met, a variant associated with genetic susceptibility to stress. In a separate set of male mice, chronic social defeat stress (CSDS) led to a susceptible or a resilient population, whose proportion was dependent on housing conditions, namely standard housing or enriched environment. Rank-rank-hypergeometric overlap (RRHO), a threshold-free approach that ranks genes by their p value and effect size direction, was used to identify genes from a continuous gradient of significancy that were concordant across groups. In mice treated with CORT and in standard-housed susceptible mice, differentially expressed genes (DEGs) were concordant for gene networks involved in neurotransmission, cytoskeleton function, and vascularization. Weighted gene co-expression analysis generated 54 gene hub modules and revealed two modules in which both CORT and CSDS-induced enrichment in DEGs, whose function was concordant with the RRHO predictions, and correlated with behavioral resilience or susceptibility. These data showed transcriptional concordance across models in which the stress coping depends upon hormonal, environmental, or genetic factors revealing common genomic drivers that embody the multifaceted nature of stress-related disorders.


Assuntos
Corticosterona , Estresse Psicológico , Animais , Ansiedade/genética , Corticosterona/farmacologia , Suscetibilidade a Doenças , Hipocampo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Estresse Psicológico/induzido quimicamente , Estresse Psicológico/genética
14.
Biometrics ; 77(2): 424-438, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-32438470

RESUMO

Identifying disease-associated changes in DNA methylation can help us gain a better understanding of disease etiology. Bisulfite sequencing allows the generation of high-throughput methylation profiles at single-base resolution of DNA. However, optimally modeling and analyzing these sparse and discrete sequencing data is still very challenging due to variable read depth, missing data patterns, long-range correlations, data errors, and confounding from cell type mixtures. We propose a regression-based hierarchical model that allows covariate effects to vary smoothly along genomic positions and we have built a specialized EM algorithm, which explicitly allows for experimental errors and cell type mixtures, to make inference about smooth covariate effects in the model. Simulations show that the proposed method provides accurate estimates of covariate effects and captures the major underlying methylation patterns with excellent power. We also apply our method to analyze data from rheumatoid arthritis patients and controls. The method has been implemented in R package SOMNiBUS.


Assuntos
Metilação de DNA , Sequenciamento de Nucleotídeos em Larga Escala , Metilação de DNA/genética , Humanos , Análise de Sequência de DNA , Sulfitos
15.
Mol Med ; 26(1): 54, 2020 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-32503411

RESUMO

BACKGROUND: Our objective was to investigate the efficacy of the beta-3 adrenergic receptor (ß3-AR) agonist BRL37344 for the prevention of liver steatosis and inflammation associated with nonalcoholic fatty liver disease (NAFLD). METHODS: Four groups were established: a control group (given a standard diet), a high-fat diet (HFD) group, an HFD + ß3-AR agonist (ß3-AGO) group, and an HFD + ß3-AR antagonist (ß3-ANT) group. All rats were fed for 12 weeks. The ß3-AR agonist BRL37344 and the antagonist L748337 were administered for the last 4 weeks with Alzet micro-osmotic pumps. The rat body weights (g) were measured at the end of the 4th, 8th, and 12th weeks. At the end of the 12th week, the liver weights were measured. Serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were analyzed with a Hitachi automatic analyzer. The lipid levels of the triglycerides (TGs), total cholesterol (TC), and low-density lipoprotein cholesterol (LDL-C) and the concentrations of free fatty acids (FFAs) were also measured. An oil red O kit was used to detect lipid droplet accumulation in hepatocytes. Steatosis, ballooning degeneration and inflammation were histopathologically determined. The protein and mRNA expression levels of ß3-AR, peroxisome proliferator-activated receptor-alpha (PPAR-α), peroxisome proliferator-activated receptor-gamma (PPAR-γ), mitochondrial carnitine palmitoyltransferase-1 (mCPT-1), and fatty acid translocase (FAT)/CD36 were measured by western blot analysis and RT-qPCR, respectively. RESULTS: After treatment with the ß3-AR agonist BRL37344 for 4 weeks, the levels of ALT, AST, TGs, TC, LDL-C and FFAs were decreased in the NAFLD model group compared with the HFD group. Body and liver weights, liver index values and lipid droplet accumulation were lower in the HFD + ß3-AGO group than in the HFD group. Decreased NAFLD activity scores (NASs) also showed that liver steatosis and inflammation were ameliorated after treatment with BRL37344. Moreover, the ß3-AR antagonist L748337 reversed these effects. Additionally, the protein and gene expression levels of ß3-AR, PPAR-α, and mCPT-1 were increased in the HFD + ß3-AGO group, whereas those of PPAR-γ and FAT/CD36 were decreased. CONCLUSION: The ß3-AR agonist BRL37344 is beneficial for reducing liver fat accumulation and for ameliorating liver steatosis and inflammation in NAFLD. These effects may be associated with PPARs/mCPT-1 and FAT/CD36.


Assuntos
Agonistas de Receptores Adrenérgicos beta 3/farmacologia , Dieta Hiperlipídica/efeitos adversos , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Receptores Adrenérgicos beta 3/metabolismo , Animais , Biomarcadores/sangue , Biópsia , Modelos Animais de Doenças , Suscetibilidade a Doenças , Imuno-Histoquímica , Metabolismo dos Lipídeos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Masculino , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/patologia , Oxirredução , Substâncias Protetoras , Ratos , Receptores Adrenérgicos beta 3/genética , Índice de Gravidade de Doença
16.
Mol Neurobiol ; 57(1): 290-301, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31327126

RESUMO

BDNF-oxytocin interactions in the brain are implicated in mammalian maternal behavior. We found that BDNF gene expression is increased in the hippocampus of rat mothers that show increased pup licking/grooming (high LG mothers) compared to low LG mothers. High LG mothers also showed increased BDNF protein levels in the nucleus accumbens (nAcc). Immunoneutralization of BDNF in the nAcc eliminated the differences in pup LG between high and low LG mothers. Oxytocin antagonist in the ventral hippocampus significantly decreased the frequency of maternal LG behavior. Oxytocin antagonist significantly prevented the oxytocin-induced BDNF gene expression in primary hippocampal cell cultures. We suggest that oxytocin-induced regulation of BDNF in the nAcc provides a neuroendocrine basis for both individual differences in maternal behavior and resilience to the stress of reproduction in female mammals.


Assuntos
Comportamento Animal , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Núcleo Accumbens/metabolismo , Recompensa , Comportamento Social , Animais , Fator Neurotrófico Derivado do Encéfalo/genética , Feminino , Regulação da Expressão Gênica , Hipocampo/metabolismo , Comportamento Materno , Ocitocina/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos Long-Evans
17.
Transl Psychiatry ; 9(1): 68, 2019 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-30718449

RESUMO

There has been a limited number of systematic reviews conducted to summarize the overview of the relationship between DNA methylation and depression, and to critically appraise the roles of major study characteristics in the accuracy of study findings. This systematic review aims to critically appraise the impact of study characteristics on the association between DNA methylation and depression, and summarize the overview of this association. Electronic databases and gray literatures until December 2017 were searched for English-language studies with standard diagnostic criteria of depression. A total of 67 studies were included in this review along with a summary of their study characteristics. We grouped the findings into etiological and treatment studies. Majority of these selected studies were recently published and from developed countries. Whole blood samples were the most studied common tissues. Bisulfite conversion, along with pyrosequencing, was widely used to test the DNA methylation level across all the studies. High heterogeneity existed among the studies in terms of experimental and statistical methodologies and study designs. As recommended by the Cochrane guideline, a systematic review without meta-analysis should be undertaken. This review has, in general, found that DNA methylation modifications were associated with depression. Subgroup analyses showed that most studies found BDNF and SLC6A4 hypermethylations to be associated with MDD or depression in general. In contrast, studies on NR3C1, OXTR, and other genes, which were tested by only few studies, reported mixed findings. More longitudinal studies using standardized experimental and laboratory methodologies are needed in future studies to enable more systematical comparisons and quantitative synthesis.


Assuntos
Metilação de DNA , Depressão/metabolismo , Transtorno Depressivo/metabolismo , Depressão/genética , Transtorno Depressivo/genética , Humanos
18.
Nat Commun ; 9(1): 298, 2018 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-29352183

RESUMO

Early life experience influences stress reactivity and mental health through effects on cognitive-emotional functions that are, in part, linked to gene expression in the dorsal and ventral hippocampus. The hippocampal dentate gyrus (DG) is a major site for experience-dependent plasticity associated with sustained transcriptional alterations, potentially mediated by epigenetic modifications. Here, we report comprehensive DNA methylome, hydroxymethylome and transcriptome data sets from mouse dorsal and ventral DG. We find genome-wide transcriptional and methylation differences between dorsal and ventral DG, including at key developmental transcriptional factors. Peripubertal environmental enrichment increases hippocampal volume and enhances dorsal DG-specific differences in gene expression. Enrichment also enhances dorsal-ventral differences in DNA methylation, including at binding sites of the transcription factor NeuroD1, a regulator of adult neurogenesis. These results indicate a dorsal-ventral asymmetry in transcription and methylation that parallels well-known functional and anatomical differences, and that may be enhanced by environmental enrichment.


Assuntos
Condicionamento Psicológico/fisiologia , Giro Denteado/metabolismo , Epigênese Genética , Interação Gene-Ambiente , Proteínas do Tecido Nervoso/genética , Neurogênese/genética , Transcriptoma , Animais , Animais Recém-Nascidos , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Sítios de Ligação , DNA/genética , DNA/metabolismo , Metilação de DNA , Giro Denteado/anatomia & histologia , Giro Denteado/diagnóstico por imagem , Giro Denteado/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento , Imageamento por Ressonância Magnética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso/metabolismo , Plasticidade Neuronal/fisiologia , Neurônios/citologia , Neurônios/fisiologia , Ligação Proteica
19.
Am J Psychiatry ; 174(12): 1185-1194, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-28750583

RESUMO

OBJECTIVE: Child abuse has devastating and long-lasting consequences, considerably increasing the lifetime risk of negative mental health outcomes such as depression and suicide. Yet the neurobiological processes underlying this heightened vulnerability remain poorly understood. The authors investigated the hypothesis that epigenetic, transcriptomic, and cellular adaptations may occur in the anterior cingulate cortex as a function of child abuse. METHOD: Postmortem brain samples from human subjects (N=78) and from a rodent model of the impact of early-life environment (N=24) were analyzed. The human samples were from depressed individuals who died by suicide, with (N=27) or without (N=25) a history of severe child abuse, as well as from psychiatrically healthy control subjects (N=26). Genome-wide DNA methylation and gene expression were investigated using reduced representation bisulfite sequencing and RNA sequencing, respectively. Cell type-specific validation of differentially methylated loci was performed after fluorescence-activated cell sorting of oligodendrocyte and neuronal nuclei. Differential gene expression was validated using NanoString technology. Finally, oligodendrocytes and myelinated axons were analyzed using stereology and coherent anti-Stokes Raman scattering microscopy. RESULTS: A history of child abuse was associated with cell type-specific changes in DNA methylation of oligodendrocyte genes and a global impairment of the myelin-related transcriptional program. These effects were absent in the depressed suicide completers with no history of child abuse, and they were strongly correlated with myelin gene expression changes observed in the animal model. Furthermore, a selective and significant reduction in the thickness of myelin sheaths around small-diameter axons was observed in individuals with history of child abuse. CONCLUSIONS: The results suggest that child abuse, in part through epigenetic reprogramming of oligodendrocytes, may lastingly disrupt cortical myelination, a fundamental feature of cerebral connectivity.


Assuntos
Sobreviventes Adultos de Maus-Tratos Infantis , Metilação de DNA , Expressão Gênica , Giro do Cíngulo/metabolismo , Bainha de Mielina/metabolismo , Neurônios/metabolismo , Oligodendroglia/metabolismo , Animais , Axônios/patologia , Estudos de Casos e Controles , Contagem de Células , Epigênese Genética , Humanos , Bainha de Mielina/ultraestrutura , Ratos , Transcrição Gênica
20.
Behav Brain Res ; 326: 22-32, 2017 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-28259675

RESUMO

The medial preoptic area (MPOA) is implicated in the expression of maternal behavior including the frequency of pup licking/grooming (LG) in the rat. Cyclic adenosine monophosphate (cAMP) responsive element-binding protein (CREB) is a transcription factor that regulates the expression of many genes. We found that lactating rats that are more maternal towards their pups showing increased licking/grooming (i.e. high-LG mothers) had increased levels of phosphorylated CREB (pCREB) in the MPOA following a nursing bout and they displayed a reduced population of greater dendritic complexity index (DCI) neurons compared to less maternal rats showing decreased licking/grooming (i.e. low-LG mothers). CREB overexpression in MPOA neuronal cultures associated with a decrease in dendritic complexity and an increase in the expression of Rem2 and brain-derived neurotrophic factor (BDNF), genes implicated in dendritic pruning. While there were no differences in Rem2 expression in virgin high and low-LG female rats, Rem2 was significantly increased in the MPOA of high-LG compared to low-LG lactating rats. CREB activity in the MPOA associates with maternal behavior and reduced dendritic complexity possibly by increasing Rem2 expression.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Proteína de Ligação a CREB/metabolismo , Dendritos , Expressão Gênica , Asseio Animal/fisiologia , Lactação/fisiologia , Comportamento Materno/fisiologia , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Área Pré-Óptica/anatomia & histologia , Área Pré-Óptica/metabolismo , Animais , Técnicas de Cultura de Células , Feminino , Proteínas Monoméricas de Ligação ao GTP/genética , Ratos , Ratos Long-Evans
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...